Расчет тепловой нагрузки дома. какую мощность отопления закладывать

Обследование тепловизором

Все чаще, чтобы повысить эффективность работы отопительной системы, прибегают к тепловизионным обследованиям строения.

Работы эти проводят в темное время суток. Для более точного результата нужно соблюдать разницу температур между помещением и улицей: она должна быть не менее в 15 о. Лампы дневного освещения и лампы накаливания выключаются. Желательно убрать ковры и мебель по максимуму, они сбивают прибор, давая некоторую погрешность.

Обследование проводится медленно, данные регистрируются тщательно. Схема проста.

Первый этап работ проходит внутри помещения

Прибор двигают постепенно от дверей к окнам, уделяя особое внимание углам и прочим стыкам

Второй этап – обследование тепловизором внешних стен строения. Все так же тщательно исследуются стыки, особенно соединение с кровлей.

Третий этап – обработка данных. Сначала это делает прибор, затем показания переносятся в компьютер, где соответствующие программы заканчивают обработку и выдают результат.

Если обследование проводила лицензированная организация, то она по итогу работ выдаст отчет с обязательными рекомендациями. Если работы велись лично, то полагаться нужно на свои знания и, возможно, помощь интернета.

20 фото кошек, сделанных в правильный момент Кошки — удивительные создания, и об этом, пожалуй, знает каждый. А еще они невероятно фотогеничны и всегда умеют оказаться в правильное время в правил.

Никогда не делайте этого в церкви! Если вы не уверены относительно того, правильно ведете себя в церкви или нет, то, вероятно, поступаете все же не так, как положено. Вот список ужасных.

Наперекор всем стереотипам: девушка с редким генетическим расстройством покоряет мир моды Эту девушку зовут Мелани Гайдос, и она ворвалась в мир моды стремительно, эпатируя, воодушевляя и разрушая глупые стереотипы.

Как выглядеть моложе: лучшие стрижки для тех, кому за 30, 40, 50, 60 Девушки в 20 лет не волнуются о форме и длине прически. Кажется, молодость создана для экспериментов над внешностью и дерзких локонов. Однако уже посл.

11 странных признаков, указывающих, что вы хороши в постели Вам тоже хочется верить в то, что вы доставляете своему романтическому партнеру удовольствие в постели? По крайней мере, вы не хотите краснеть и извин.

Что форма носа может сказать о вашей личности? Многие эксперты считают, что, посмотрев на нос, можно многое сказать о личности человека

Поэтому при первой встрече обратите внимание на нос незнаком

Пример выполнения расчета

Поправочные коэффициенты в данном случае будут равны:

  • К1 (двухкамерный стеклопакет) = 1,0;
  • К2 (стены из бруса) = 1,25;
  • К3 (площадь остекления) = 1,1;
  • К4 (при -25 °C -1,1, а при 30°C) = 1,16;
  • К5 (три наружные стены) = 1,22;
  • К6 (сверху теплый чердак) = 0,91;
  • К7 (высота помещения) = 1,0. 

В результате полная тепловая нагрузка будет равна: В том случае, когда бы использовался упрощенный метод вычислений, основанный на расчете мощности отопления согласно площади, то результат был бы совсем иной: Пример расчета тепловой мощности системы отопления на видео:

Точные расчеты тепловой нагрузки

Значение теплопроводности и сопротивление теплопередачи для строительных материалов

Но все же этот расчет оптимальной тепловой нагрузки на отопление не дает требуемую точность вычисления. Он не учитывает важнейший параметр – характеристики здания. Главной из них является сопротивление теплопередачи материал изготовления отдельных элементов дома – стен, окон, потолка и пола. Именно они определяют степень сохранения тепловой энергии, полученной от теплоносителя системы отопления.

Что же такое сопротивление теплопередачи (R )? Это величина, обратная теплопроводности (λ ) – возможности структуры материала передавать тепловую энергию. Т.е. чем больше значение теплопроводности – тем выше тепловые потери. Для расчета годовой нагрузки на отопление воспользоваться этой величиной нельзя, так как она не учитывает толщину материала (d ). Поэтому специалисты используют параметр сопротивление теплопередачи, который вычисляется по следующей формуле:

Расчет по стенам и окнам

Сопротивление теплопередачи стен жилых зданий

Существуют нормированные значения сопротивления теплопередачи стен, которые напрямую зависят от региона, где расположен дом.

В отличие от укрупненного расчета нагрузки на отопление сначала нужно вычислить сопротивление теплопередачи для наружных стен, окон, пола первого этажа и чердака. Возьмем за основу следующие характеристики дома:

  • Площадь стен – 280 м². В нее включены окна – 40 м² ;
  • Материал изготовления стен – полнотелый кирпич (λ=0.56 ). Толщина наружных стен – 0,36 м. Исходя из этого рассчитываем сопротивление телепередачи — R=0.36/0.56= 0,64 м²*С/Вт ;
  • Для улучшения теплоизоляционных свойств был установлен наружный утеплитель – пенополистирол толщиной 100 мм. Для него λ=0,036. Соответственно R=0,1/0,036= 2,72 м²*С/Вт ;
  • Общее значение R для наружных стен равно 0,64+2,72= 3,36 что является очень хорошим показателем теплоизоляции дома;
  • Сопротивление теплопередачи окон — 0,75 м²*С/Вт (двойной стеклопакет с заполнением аргоном).

Фактически тепловые потери через стены составят:

(1/3,36)*240+(1/0.75)*40= 124 Вт при разнице температуры в 1°С

Температурные показатели возьмем такие же, как и для укрупненного вычисления нагрузки на отопление +22°С в помещении и -15°С на улице. Дальнейший расчет необходимо делать по следующей формуле:

Расчет по вентиляции

Затем необходимо вычислить потери через вентиляцию. Общий объем воздуха в здании составляет 480 м³. При этом его плотность примерно равна 1,24 кг/м³. Т.е. его масса равна 595 кг. В среднем за сутки (24 часа) происходит пятикратное обновление воздуха. В таком случае для вычисления максимальной часовой нагрузки для отопления нужно рассчитать тепловые потери на вентиляцию:

(480*40*5)/24= 4000 кДж или 1,11 кВт/час

Суммируя все полученные показатели можно найти общие тепловые потери дом:

Таким образом определяется точная максимальная тепловая нагрузка на отопление. Полученная величина напрямую зависит от температуры на улице. Поэтому для расчета годовой нагрузки на отопительную систему нужно учитывать изменение погодных условий. Если средняя температура в течение отопительного сезона составляет -7°С, то итоговая нагрузка на отопление будет равна:

(124*(22+7)+((480*(22+7)*5)/24))/3600)*24*150(дней отопительного сезона)=15843 кВт

Меняя температурные значения можно сделать точный расчет тепловой нагрузки для любой системы отопления.

К полученным результатам нужно прибавить значение тепловых потерь через крышу и пол. Это можно сделать поправочным коэффициентом 1,2 – 6,07*1,2=7,3 кВт/ч.

Полученная величина указывает на фактические затраты энергоносителя при работе системы. Существует несколько способов регулирования тепловой нагрузки отопления. Наиболее действенный из них – уменьшение температуры в комнатах, где нет постоянного присутствия жильцов. Это можно осуществить с помощью терморегуляторов и установленных датчиков температуры. Но при этом в здании должна быть установлена двухтрубная система отопления.

Для вычисления точного значения тепловых потерь можно воспользоваться специализированной программой Valtec. В видеоматериале показа пример работы с ней.

Анатолий Коневецкий, Крым, Ялта

Анатолий Коневецкий, Крым, Ялта

Уважаемая Ольга! Извините,что обращаюсь к Вам еще раз. Что-то у меня по Вашим формулам получается немыслимая тепловая нагрузка: Кир=0,01*(2*9,8*21,6*(1-0,83)+12,25)=0,84 Qот=1,626*25600*0,37*((22-(-6))*1,84*0,000001=0,793 Гкал/час По укрупненной формуле, приведенной выше, получается всего 0,149 Гкал/час. Не могу понять, в чем дело? Разъясните пожалуйста! Извините за беспокойство. Анатолий.

Анатолий Коневецкий, Крым, Ялта

Общая тепловая мощность

По площади

СНиПы полувековой давности предлагают простейшую схему расчета, которой многие пользуются по сей день: на 1 квадратный метр площади отапливаемого помещения берется 100 ватт тепла. На дом площадью 100 квадратов нужно 10 КВт. Точка.

Просто, понятно и… слишком неточно.

Причины?

  1. СНиПы разрабатывались для многоквартирных домов. Утечки тепла в квартире, окруженной отапливаемыми помещениями, и в частном доме с ледяным воздухом за стенами несопоставимы.
  2. Расчет верен для квартир с высотой потолка 2,5 метра. Более высокий потолок увеличит объем помещения, а, стало быть, и затраты тепла.

Отапливать квадратный метр площади в этом доме явно труднее, чем в хрущевке.

  1. Через окна и двери теряется куда больше тепловой энергии, чем через стены.
  2. Наконец, будет логичным предположить, что потери тепла в Сочи и Якутске будут сильно различаться. Увеличение дельты температур между помещением и улицей в два раза увеличит затраты тепла на отопление ровно вдвое. Физика, однако.

По объему

Для помещений с нормированным тепловым сопротивлением ограждающих конструкций (для Москвы – 3,19 м2*С/Вт) можно использовать расчет тепловой мощности по объему помещения.

На кубометр отапливаемого объема квартиры берется 40 ватт тепла. На кубометр объема частного дома без общих стен с соседними отапливаемыми строениями – 60.

Для таунхаусов и квартир на крайних этажах берутся промежуточные значения.

  • На каждое окно к базовому значению добавляется 100 ватт тепловой энергии. На каждую ведущую на улицу дверь – 200.
  • Полученная мощность умножается на региональный коэффициент:
Регион Коэффициент
Краснодар, Крым 0,7-0,9
Ленинградская и Московская области 1,2-1,3
Сибирь, Дальний Восток 1,5-1,6
Чукотка, Якутия 2,0

Давайте еще раз рассчитаем потребность в тепловой мощности отопления для дома площадью 100 квадратов, однако теперь конкретизируем задачу:

Параметр Значение
Высота потолков 3,2 м
Количество окон 8
Количество ведущих на улицу дверей 2
Расположение Г. Тында (средняя температура января – -28С)

Зима в Тынде.

  1. Высота потолков в 3,2 метра даст нам внутренний объем дома в 3,2*100=320 м3.
  2. Базовая тепловая мощность составит 320*60=19200 ватт.
  3. Окна и двери внесут свою лепту: 19200+(100*8)+(200*2)=20400 ватт.
  4. Бодрящий холод января заставит нас использовать климатический коэффициент 1,7. 20400*1,7=34640 ватт.

Как нетрудно заметить, разница с расчетом по первой схеме не просто велика – она разительна.

Что делать, если качество утепления дома существенно лучше или хуже, чем предписывает СНиП “Тепловая защита зданий”?

По объему и коэффициенту утепления

Инструкция для этой ситуации сводится к использования формулы вида Q=V*Dt*K/860, в которой:

  • Q – заветный показатель тепловой мощности в киловаттах.
  • V – Объем отапливаемого помещения.
  • Dt -дельта температур между помещением и улицей в пик холодов.
  • K – коэффициент, зависящий от степени утепления здания.

Дом из sip-панелей явно будет терять меньше тепла, чем кирпичный.

Две переменных требуют отдельных комментариев.

Дельта температур берется между предписанной СНиП температурой жилого помещения (+18 для регионов с нижней границей зимних холодов до -31С и +20 – для зон с более сильными морозами) и средним минимумом наиболее холодного месяца. Ориентироваться на абсолютный минимум не стоит: рекордные холода редки и, простите за невольный каламбур, погоды не делают.

Коэффициент утепления можно вывести аппроксимацией данных из следующей таблицы:

Коэффициент утепления Ограждающие конструкции
0,6 – 0,9 Пенопластовая или минераловатная шуба, утепленная кровля, энергосберегающие тройные стеклопакеты
1,-1,9 Кладка в полтора кирпича, однокамерные стеклопакеты
2 – 2,9 Кладка в кирпич, окна в деревянных рамах без утепления
3-4 Кладка в полкирпича, остекление в одну нитку

Давайте еще раз выполним расчет тепловых нагрузок на отопление для нашего дома в Тынде, уточнив, что он утеплен пенопластовой шубой толщиной 150 мм и защищен от непогоды окнами с тройными стеклопакетами.

Собственно, иначе современные дома в условиях Крайнего Севера не строятся.

Жители северных регионов страны вынуждены очень серьезно относиться к утеплению дома.

  1. Температуру внутри дома примем равной +20 С.
  2. Средний минимум января услужливо подскажет общеизвестная интернет-энциклопедия. Он равен -33С.
  3. Таким образом, Dt=53 градуса.
  4. Коэффициент утепления возьмем равным 0,7: описанное нами утепление близко к верхней границе эффективности.

Q=320*53*0,7/860=13,8 КВт. Именно на это значение и стоит ориентироваться при выборе котла.

Расход теплоносителя через 1м.п. чугунных радиаторов

Справочник проектировщика «Внутренние санитарно-технические устройства» (И.Г. Староверов, 1975 г.), таблица 12.3, стр. 47

Определим расход теплоносителя через одну секцию чугунного радиатора кг/ч

35:10 = 3,5 кг/ч расход теплоносителя через одну секцию (G), где:

10 шт. – количество секций в 1 м.п. радиатора;

35 кг/ч – расход теплоносителя через 1м.п. радиатора.

Расход теплоносителя через 1м.п. отопительных приборов

Расчетная площадь нагревательной поверхности секционных радиаторов Fp в зависимости от числа секций в радиаторе
ЧислосекцийNi Радиатор
М-140-АО М-140 (М-140-А) М-140-АО-300 М-90 РД-90с
Площадь нагревательной поверхности одной секции, экм
0,35 0,31 0,217 0,26 0,275
2 0,84 0,76 0,59 0,67 0,70
3 1,18 1,07 0,80 0,93 0,97
4 1,52 1,37 1,01 1,18 1,25
5 1,84 1,67 1,22 1,43 1,50
6 2,16 1,98 1,43 1,68 1,73
7 2,54 2,26 1,64 1,93 2,01
8 2,82 2,52 1,85 2,19 2,28
9 3,15 2,83 2,06 2,44 2,56
10 3,49 3,1 2,27 2,69 2,80
11 3,82 3,39 2,47 2,94 3,05
12 4,12 3,68 2,68 3,19 3,30
13 4,45 3,96 2,89 3,45 3,57
14 4,77 4,26 3,10 3,70 3,86
15 5,08 4,58 3,31 3,95 4,06
16 5,42 4,82 3,52 4,20 4,32
17 5,73 5,09 3,73 4,45 4,54
18 6,05 5,39 3,94 4,71 4,80
19 6,37 5,67 4,15 4,96 5,07
20 6,70 5,96 4,36 5,21 5,33
21 7,01 6,24 4,57 5,46 5,59
22 7,34 6,58 4,78 5,71 5,85
23 7,65 6,81 4,99 5,97 6,11
24 7,99 7,10 5,20 6,22 6,37
24 8,31 7,38 5,41 6,47 6,57
Справочник проектировщика «Внутренние санитарно-технические устройства» (И.Г. Староверов, 1975 г.), таблица 12.13, стр. 67

Красным цветом выделены данные по радиаторам 1-го (7 секций), зеленым — 2-го (8 секций), синим — 3-го (9 секций) типов.

Определим расчетную формулу плотности теплового потока на 1 экм нагревательной поверхности отопительных чугунных радиаторов Gотн / Fp ≤ 7 или

Gотн / Fp ≥ 7

Радиаторы М-140-АО 7 секций (4 радиатора)

Gотн / Fp = (3,5 х 7) : 17,4 : 2,54 = 0,55

Итого: 0,55 < 7

Полученное значение меньше 7, дальнейший расчет выполним по формуле из таблицы ниже.

Вычислим теплопередачу чугунных радиаторов.

3,5 х 7 = 24,5 кг/ч расход воды в радиаторе

qэ = 1,89/φ ·∆tср1,32 = 1,89/1,05 х ((95,0 + 70,0):2 -20)1,32 = 422,5 Ккал/(ч·экм)

0,35х7 = 2,45 экм

422,5х2,45 х4 = 4140,5 Ккал/ч

Радиаторы М-140-АО 8 секций (1 радиатор)

Gотн / Fp = (3,5 х

Итого: 0,57 < 7

Полученное значение меньше 7, дальнейший расчет выполним по формуле из таблицы ниже.

Вычислим теплопередачу чугунных радиаторов.

3,5 х 8 = 28 кг/ч расход воды в радиаторе

qэ = 1,89/φ ·∆tср1,32 = 1,89/1,04 х ((95,0 + 70,0):2 -20)1,32 = 426,5 Ккал/(ч·экм)

0,35х8 = 2,8 экм

426,5х2,8 х1 = 1194,2 Ккал/ч

Радиаторы М-140-АО 9 секций (1 радиатор)

Gотн / Fp = (3,5 х 9) : 17,4 : 3,15 = 0,57

Итого: 0,57 < 7

Полученное значение меньше 7, дальнейший расчет выполним по формуле из таблицы ниже.

Вычислим теплопередачу чугунных радиаторов.

3,5 х 9 = 31,5 кг/ч расход воды в радиаторе

qэ = 1,89/φ ·∆tср1,32 = 1,89/1,04 х ((95,0 + 70,0):2 -20)1,32 = 426,5 Ккал/(ч·экм)

0,35х9 = 3,15 экм

426,5х3,15 х1= 1343,5 Ккал/ч

Суммарная тепловая нагрузка по радиаторам М-140-АО

Qр.от.= 4140,5+1194,2 +1343,5 =6678,2 Ккал/ч

Расчетная формула плотности теплового потока на 1 экм нагревательной поверхности отопительных приборов:

Справочник проектировщика «Внутренние санитарно-технические устройства» (И.Г. Староверов, 1975 г.), таблица 12.8, стр. 52

Посмотреть: тепловые нагрузки на отопление админ здания

Коэффициент φ, учитывающий расход воды в систему:

Справочник проектировщика «Внутренние санитарно-технические устройства» (И.Г. Староверов, 1975 г.), стр. 48

Теплотехнический расчет индивидуального жилого дома

Приведенные выше методики укрупненных расчетов больше всего ориентированы на продавцов или покупателей радиаторов систем отопления, устанавливаемых в типовых многоэтажных жилых домах. Но когда речь идет о подборе дорогостоящего котельного оборудования, о планировании системы отопления загородного дома, в котором кроме радиаторов будут установлены системы напольного отопления, горячего водоснабжения и вентиляции, пользоваться этими методиками крайне не рекомендуется.

Каждый владелец индивидуального жилого дома или коттеджа еще на стадии строительства достаточно скрупулезно подходит к разработке строительной документации, в которой учитываются все современные тенденции использования строительных материалов и конструкций дома. Они обязательно должны не быть типовыми или морально устаревшими, а изготовлены с учетом современных энергоэффективных технологий. Следовательно, и тепловая мощность системы отопления должна быть пропорционально ниже, а суммарные затраты на устройство системы обогрева дома значительно дешевле. Эти мероприятия позволяют в дальнейшем при использовании отопительного оборудования снижать затраты на потребление энергоресурсов.

Расчет теплопотерь выполняется в специализированных программах либо с использованием основных формул и коэффициентов теплопроводности конструкций, учитывается влияние инфильтрации воздуха, наличие или отсутствие систем вентиляции в здании. Расчет заглубленных цокольных помещений, а также крайних этажей производится по отличной от основных расчетов методике, которая учитывает неравномерность остывания горизонтальных конструкций, то есть потери тепла через крышу и пол. Выше приведенные методики этот показатель не учитывают.

Теплотехнический расчет выполняется, как правило, квалифицированными специалистами в составе проекта на систему отопления в результате которого производится дальнейший расчет количества и мощность приборов отопления, мощность отдельного оборудования, подбор насосов и другого сопутствующего оборудования.

Исходные данные:

  • Помещение с обмером по наружным габаритам 3000х3000;
  • Окно размерами 1200х1000.

Целью расчета является определение удельной мощности системы отопления, необходимой для нагрева 1м?.

Результат:

  • Qуд при т/изоляции 100 мм составляет 103 Вт/м?
  • Qуд при т/изоляции 150 мм составляет 81 Вт/м?
  • Qуд при т/изоляции 200 мм составляет 70 Вт/м?

Как видно из расчета, наибольшие потери тепла составляют для жилого дома с наименьшей толщиной изоляции, следовательно, мощность котельного оборудования и радиаторов будет выше на 47% чем при строительстве дома с теплоизоляцией в 200 мм.

Параметры для расчета тепловых нагрузок

Информация дается в ознакомительных целях, для расчётов нагрузки, не предназначенных проектной документации, нужной для подключения здания к центральной теплосети — в качестве статистической базы расходов теплоэнергии.

Тепловые характеристики

Произвести точный расчет сложно, — трудно учесть нюансы здания. Хорошо воспользоваться опытом знакомых, статистическими данными похожих объектов (расходы теплоэнергии в течение нескольких лет). Если нет, придется осваивать навык проектирования, расчета нагрузок самостоятельно.

  • Перед вычислениями нужно определить назначение здания. Выявить, составить температурную смету по оптимальным режимам каждого помещения, — данные можно найти в СНиП 2.04.05, ДВН В.2.5-39:2008. Содержатся рекомендации по теплоносителю, оптимальным режимам для помещений. Правильный режим поможет в учёте, распределении тепловой энергии.
  • Нужно изучить конструктивные особенности здания, используемые строительные материалы, толщину стен, теплоизоляцию, тип, характер кровли, чердачного помещения, количество, площадь дверных, оконных проемов. Каждый стройматериал обладает теплопроводностью, нужно знать, какой материал где используется, определить площадь, выявить общие теплопотери здания.
  • В отдельные расчеты нужно отнести сауны, бани, оранжереи.
  • Система вентиляции — значительная нагрузка на систему отопления.
  • Интенсивность использования помещений. Нужно ли постоянное поддержание температуры для проживания или только для обслуживания.

Уточняющих факторов для расчета нагрузки может быть больше.

Расчет радиатора отопления по площади

Зависит он от материала, из которого они изготовлены. Чаще всего сегодня используются биметаллические, алюминиевые, стальные, значительно реже чугунные радиаторы. Каждый из них имеет свой показатель теплоотдачи (тепловой мощности). Биметаллические радиаторы при расстоянии между осями в 500 мм, в среднем имеют 180 — 190 Вт. Радиаторы из алюминия имеют практически такие же показатели.

Теплоотдача описанных радиаторов рассчитывается на одну секцию. Радиаторы стальные пластинчатые являются неразборными. Поэтому их теплоотдача определяется исходя из размера всего устройства. Например, тепловая мощность двухрядного радиатора шириной 1 100 мм и высотой 200 мм будет 1 010 Вт, а панельного радиатора из стали шириной 500 мм, а высотой 220 мм составит 1 644 Вт.

В расчет радиатора отопления по площади входят следующие базовые параметры:

— высота потолков (стандартная – 2,7 м),

— тепловая мощность (на кв. м – 100 Вт),

— одна внешняя стена.

Эти расчеты показывают, что на каждые 10 кв. м необходимо 1 000 Вт тепловой мощности. Этот результат делится на тепловую отдачу одной секции. Ответом является необходимое количество секций радиатора.

Для южных районов нашей страны, так же как и для северных, разработаны понижающие и повышающие коэффициенты.

Другие способы определения количества тепла

Добавим, что также существуют и другие способы, при помощи которых можно рассчитать объем тепла, которое поступает в систему отопления. В данном случае формула не только несколько отличается от приведенных ниже, но и имеет несколько вариаций.

Что же касается значений переменных, то они здесь те же, что и в предыдущем пункте данной статьи. На основании всего этого можно сделать уверенный вывод, что рассчитать тепло на отопление вполне можно своим силами. Однако при этом не стоит забывать о консультации со специализированными организациями, которые ответственны за обеспечение жилья теплом, так как их методы и принципы произведения расчетов могут отличаться, причем существенно, а процедура может состоять из другого комплекса мер.

Если же вы намереваетесь обустроить систему «теплого пола», то подготовьтесь к тому, что процесс расчета будет более сложным, поскольку здесь учитываются не только особенности контура отопления, но и характеристик электрической сети, которая, собственно, и будет подогревать пол. Более того, организации, которые занимаются установкой подобного рода оборудования, также будут другими.

Обратите внимание! Люди нередко сталкиваются с проблемой, когда калории следует переводить в киловатты, что объясняется использованием во многих специализированных пособиях единицы измерения, которая в международной системе называется «Си». >

В таких случаях необходимо помнить, что коэффициент, благодаря которому килокалории будут переведены в киловатты, равен 850

Если же говорить более простым языком, то один киловатт – это 850 килокалорий. Данный вариант расчета более просто, чем приведенные выше, так как определить значение в гигакалориях можно за несколько секунд, поскольку Гкал, как уже отмечалось ранее, это миллион калорий

В таких случаях необходимо помнить, что коэффициент, благодаря которому килокалории будут переведены в киловатты, равен 850. Если же говорить более простым языком, то один киловатт – это 850 килокалорий. Данный вариант расчета более просто, чем приведенные выше, так как определить значение в гигакалориях можно за несколько секунд, поскольку Гкал, как уже отмечалось ранее, это миллион калорий.

Дабы избежать возможных ошибок, не стоит забывать и о том, что практически все современные тепловые счетчики работают с некоторой погрешностью, пусть и в пределах допустимого. Такую погрешность также можно рассчитать собственноручно, для чего необходимо использовать следующую формулу:

Традиционно, теперь выясняем, что же обозначает каждое из этих переменных значений.

1. V1 – это расход рабочей жидкости в трубопроводе подачи.

2. V2 – аналогичный показатель, но уже в трубопроводе «обратки».

3. 100 – это число, посредством которого значение переводится в проценты.

4. Наконец, Е – это погрешность учетного устройства.

Согласно эксплуатационным требованиям и нормам, предельно допустимая погрешность не должна превышать 2 процентов, хотя в большинстве счетчиков она составляет где-то 1 процент.

В итоге отметим, что правильно произведенный расчет Гкал на отопление позволяет значительно сэкономить средства, затрачиваемые на обогрев помещения. На первый взгляд, процедура эта достаточно сложна, но – и вы в этом убедились лично – при наличии хорошей инструкции ничего трудного в ней нет.

На этом все. Также советуем посмотреть приведенный ниже тематический видеоматериал. Удачи в работе и, по традиции, теплых вам зим!

Для примера – проект одноэтажного дома 100 м²

Чтобы доходчиво пояснить все способы определения количества тепловой энергии, предлагаем взять в качестве примера одноэтажный дом общей площадью 100 квадратов (по наружному обмеру), показанный на чертеже. Перечислим технические характеристики здания:

  • регион постройки – полоса умеренного климата (Минск, Москва);
  • толщина внешних ограждений – 38 см, материал – силикатный кирпич;
  • наружное утепление стен – пенопласт толщиной 100 мм, плотность – 25 кг/м³;
  • полы – бетонные на грунте, подвал отсутствует;
  • перекрытие – ж/б плиты, утепленные со стороны холодного чердака пенопластом 10 см;
  • окна – стандартные металлопластиковые на 2 стекла, размер – 1500 х 1570 мм (h);
  • входная дверь – металлическая 100 х 200 см, изнутри утеплена экструдированным пенополистиролом 20 мм.

В коттедже устроены межкомнатные перегородки в полкирпича (12 см), котельная располагается в отдельно стоящей постройке. Площади комнат обозначены на чертеже, высоту потолков будем принимать в зависимости от поясняемой расчетной методики – 2.8 либо 3 м.

Расчет количества секций отопительных радиаторов – для чего это необходимо знать

С первого взляда высчитать, сколько секций отопительного прибора установить в том или другом помещении – просто. Чем больше комната – тем из большего количества секций должен состоять отопительный прибор. Но в действительности то, насколько тепло будет в том или другом помещении зависит от более чем десятка факторов. Учтя их, высчитать необходимое кол-во тепла от отопительных приборов, можно в несколько раз точнее.

Общие сведения

Отдача тепла одной части радиатора из чугуна – 140 ватт, более качественных железных – от 170 и выше.

Можно делать расчет количества секций отопительных радиаторов,выходя из площади помещения либо же его объема.

По нормативам считается, что на обогрев одного метра квадратного помещения необходимо 100 ватт энергии тепла. Если же исходить из объема, то тогда кол-во тепла на 1 метр кубический как правило составит не меньше 41 ватта.

Но ни один из этих вариантов не будет точным если не иметь в виду свойств того либо прочего помещения, количества и оконный размер, материал стен, и многое иное. Благодаря этому рассчитывая части отопительного прибора по типовой формуле, станем прибавлять коэффициенты, сделанные тем или другим требованием.

Площадь помещения – расчет количества секций отопительных радиаторов

Подобный расчет в большинстве случаев применяется к помещениям, размещенным в стандартных панельных жилых домах с потолочной высотой до 2,6 метра.

Площадь комнаты множится на 100 (кол-во тепла для 1м2) и разделяется на указанную изготовителем отдачу тепла одной части отопительного прибора. К примеру: площадь комнаты 22 м2, отдача тепла одной части отопительного прибора – 170 ватт.

Для данной комнаты необходимо 13 секций отопительного прибора.

Если же одна секция отопительного прибора станет иметь 190 ватт отдачи тепла, то получаем 22Х100/180=11,57 , другими словами можно обойтись 12 секциями.

К расчетам необходимо добавить 20% если комната имеет балкон или находится в срезе дома. Батарея, поставленная в нише, еще на 15% снизит отдачу тепла. Однако в кухне будет на 10-15% теплее.

Производим расчеты по объему помещения

Для дома из панелей с обычной потолочной высотой, как уже выше упоминалось, тепловой расчет изготавливается из необходимости 41 ватт на 1м3. Но если например дом новый, кирпичный, в нем установлены пакеты стекол, а фасадные стены утеплены, то необходимо уже 34 ватт на 1м3.

Формула расчета количества секций отопительного прибора выглядит так: объем (площадь, помноженная на потолочную высоту) умножается на 41 или 34 (в зависимости от типа дома) и разделяется на отдачу тепла одной части отопительного прибора, установленного в паспорте изготовителя.

Площадь комнаты 18 м2, потолочная высота 2, 6 м. Дом – стереотипная панельная постройка. Отдача тепла одной части отопительного прибора – 170 ватт.

18Х2,6Х41/170=11,2. Итак, нам необходимо 11 секций отопительного прибора. Это при условиях, что комната не угловая и в ней нет балкона, в другом случае лучше установить 12 секций.

Посчитаем максимально точно

А вот формула, по которой максимально точно можно создать расчет количества секций отопительного прибора:

Площадь помещения помноженная на 100 ватт и на коэффициенты q1, q2, q3, q4, q5, q6, q7 и поделенная на отдачу тепла одной части отопительного прибора.

Подробно об данных коэффициентах:

q1 – вид остекления: при тройном стеклопакете показатель будет 0,85, при двойном стеклопакете — 1 и при простом остеклении – 1,27.

q2 – тепловая изоляция стен:

  • современная тепловая изоляция – 0,85;
  • укладка в два кирпича с применением утеплителя – 1;
  • неутепленные стены — 1,27.

q3 – соотношение площадей окон и пола:

q4 — самая маленькая внешняя температура:

  • -10 градусов – 0,7;
  • -20 градусов – 1,1;
  • -35 градусов – 1,5.

q5 – кол-во фасадных стен:

q6 – вид помещения, которое находится выше расчетного:

  • обогреваемое — 0,8;
  • чердачное обогреваемое — 0,9;
  • чердачное необогреваемое – 1.

q7 – потолочная высота:

Если будут взяты в учет все перечисленные выше коэффициенты, сосчитать численность секций отопительного прибора в помещении можно будет максимально точно.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Титан-строитель
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: